
FLOPS 2024

2024-05-15 @ Kumamoto, Japan

Takashi Suwa(1, 2) Atsushi Igarashi(1)

(1) Kyoto University (2) National Institute of Informatics

An ML-Style Module System

for Cross-Stage Type Abstraction

in Multi-Stage Programs

Multi-stage programming (MSP) [Davies 1996] [Taha & Sheard 1997]

• One way to formalize languages for metaprogramming

• Useful as a basis of:

– macros (i.e. compile-time code generation)

– program specialization (i.e. runtime code generation)

• Has a notion of stages

• One can write code generation in a type-safe manner

– The well-typedness of generated code is statically guaranteed

Backgrounds

• Just as well as ordinary languages, MSP languages 
should have a module system [McQueen 1986]

• Type abstraction by signatures is nice to have

– Enables us to make modules loosely-coupled

Motivation: MSP with Modules

• A module system useful for decomposing 
multi-stage programs into modules 
without preventing type abstraction

• Major features:

– Value items for different stages can be defined 

in a single structure (i.e. struct … end)

– Covers many full-fledged module functionalities such as:

• (generative) higher-order functors

• (syntactically unrestricted) projections

• the with type-construct

• higher-kinded types

• Formalization is based on F-ing Modules [Rossberg, Russo, & Dreyer 2014]

Our Work: MetaFM

A module for handling absolute timestamps 
equipped with a macro that converts a text to a timestamp

• The macro does not reveal the internal of type Timestamp.t

• Type abstraction covers both compile-time and runtime

A Teaser for Motivating Examples

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in
~)

val generate : string -> t~

module Timestamp :> sig
 type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t
￼

end = struct
 (* Implementation omitted *)
end

⋯

• Observe that value items for different stages should be 
able to coexist in a single structure for type abstraction

• Exemplify that such a design is achievable 
without hampering many realistic module features 
by defining MetaFM and proving its type safety

• Give System Fω , a type-safe extension of System Fω [Girard 1972] 
with staging features (as a target language)

• Also support cross-stage persistence [Hanada+ 2014] [Taha+ 2000]

– A staging feature that enables us to use 

one common value at more than one stage

Summary of Contributions

• Brief introduction to multi-stage programming

• Motivating examples

• Formalization

• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion

Outline

Syntax

e ::= x ∣ e e ∣ λx . e ∣ ⋯ ∣ ⟨e⟩ ∣ ∼e
bracket escape

“Forms a code fragment

 for the next stage”

Bracket is “convex”⟨e⟩

“ evaluates to a code fragment 
 at the prev. stage and fills the hole”
e

Escape is “concave”∼e

Stage 0 ≈ compile-time

Stage 1 ≈ runtime
Especially when 
#stages = 2:

• A minimal language similar to MetaML [Taha & Sheard 1997]:

• Graphical intuition:

(Especially when #stages = 2)

• Only subexpressions at stage 0 are evaluated 
by the ordinary CBV β-reduction

• Escape cancels bracket at stage 1

– when a code fragment is directly inside the hole 

and contains no nested holes

• When the whole program reaches with no holes:

– That’s the end of macro expansion

– Then, is used as an ordinary program

∼ ⟨ ⟩

⟨e⟩

e

Essence of Operational Semantics

• genpower:

– Receives and returns code for the -th power function

– Example use:

• cf. the usual non-staged power function

– cubic incurs recursive calls at runtime

m ∈ ℕ m

Example

⏟m

let cubic = ~ (genpower 3) in

let cubic = power 3 in

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

λa. ~(aux 2 a)genpower 2

Generates a fresh symbol 
for hygienicity 
(not mentioned henceforth)

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

λa. ~(aux 2 a)

λa. ~ ~ a * ~(aux 1 a)

λa. ~ a * ~(aux 1 a)

genpower 2

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

λa. ~(aux 2 a)

λa. ~ ~ a * ~(aux 1 a)

λa. ~ a * ~(aux 1 a)

λa. ~ a * ~ a * ~(aux 0 a)

genpower 2

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

λa. ~(aux 2 a)

λa. ~ ~ a * ~(aux 1 a)

λa. ~ a * ~(aux 1 a)

λa. ~ a * ~ a * ~(aux 0 a)

λa. ~ a * ~ a * ~ 1

genpower 2

Example Reduction

 (aux n) λx. ~ xlet genpower n =

let rec aux n s =
 if n <= 0 then else

 s (aux (n - 1) s) ~ * ~

1

λa. ~(aux 2 a)

λa. ~ ~ a * ~(aux 1 a)

λa. ~ a * ~(aux 1 a)

λa. ~ a * ~ a * ~(aux 0 a)

λa. ~ a * ~ a * ~ 1

λa. ~ a * ~ a * 1

λa. a * (a * 1)

genpower 2

• Code types are added:

– “The type for code fragments 

 that will be expressions of type at the next stage”

– e.g. genpower :

• Especially prevents situations where:

– finally produced code contains an unbound variable

– generated code is ill-typed

τ ::= ⋯ ∣ ⟨τ⟩

τ
int → ⟨int → int⟩

Minimal Type System for Staging

 λx. y

 true * 3(λt. t ~ * 3) true

[Taha & Sheard 1997]

• Brief introduction to multi-stage programming

• Motivating examples

• Formalization

• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion

Outline

A module for handling absolute timestamps:

It would be nice if we can use a macro like the following:
let our_slot_in_flops_2024 : Timestamp.t =

(Timestamp.generate “2024-05-15T16:30+09:00”
in
~)

Example Use of Our Module System

module Timestamp :> sig
 type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t
￼
end = struct
 type t = int (* Internally in Unix time *)
 val precedes ts1 ts2 = ts1 < ts2
 val advance_by_dates ts dates =

end

⋯

⋯

Example Use of Our Module System

~

module Timestamp :> sig
 type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t

 ~￼
end = struct
 type t = int (* Internally in Unix time *)
 val precedes ts1 ts2 = ts1 < ts2
 val advance_by_dates ts dates =

 ~

end

val generate : string -> t

val generate s =
 match parse_datetime s with
 | None -> failwith “invalid datetime”
 | Some ts -> lift ts

⋯

⋯

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in
~)

~

module Timestamp :> sig
 type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t

 ~￼
end = struct
 type t = int (* Internally in Unix time *)
 val precedes ts1 ts2 = ts1 < ts2
 val advance_by_dates ts dates =

 ~

end

val generate : string -> t

val generate s =
 match parse_datetime s with
 | None -> failwith “invalid datetime”
 | Some ts -> lift ts

⋯

⋯

Example Use of Our Module System

Macros do not expose

the internal representation of 
type Timestamp.t as well as 
ordinary values do not

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in
~)

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in
~)

~

module Timestamp :> sig
 type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t

 ~￼
end = struct
 type t = int (* Internally in Unix time *)
 val precedes ts1 ts2 = ts1 < ts2
 val advance_by_dates ts dates =

 ~

end

val generate : string -> t

val generate s =
 match parse_datetime s with
 | None -> failwith “invalid datetime”
 | Some ts -> lift ts

⋯

⋯

Example Use of Our Module System

Macros do not expose

the internal representation of 
type Timestamp.t as well as 
ordinary values do not

Lifts a value to the next stage

e.g. lift 5 5

• A macro offered by MakeMap (= OCaml’s Map.Make) 
that converts a list of key-value pairs to a map beforehand

An Example involving Functors

~

module MakeMap :> (Key : Ord) -> sig
 type t :: * -> *
 val empty : ∀α. t α
 val find_opt : ∀α. Key.t -> t α -> option α

 ~
end = fun(Key : Ord) -> struct
 type t α = Leaf | Node of (* Balanced binary tree *)
 val empty = Leaf
 val find_opt key map =

 ~
end

val generate : ∀α. list (Key.t × α) -> t α

val generate kvs =

module StringMap = MakeMap(String)

let month_abbrev_to_int (s : string) : option int =
 StringMap.find_opt s

(StringMap.generate [(“Jan”, 1), , (“Dec”, 12)]~

• Brief introduction to multi-stage programming

• Motivating examples

• Formalization

• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion

Outline

• cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]

– Uses an elaboration technique to define semantics

• Type-directed conversion of modules into System Fω terms

– Proves type safety in two steps:

1. Any elaborated term is well-typed under System Fω

2. System Fω [Girard 1972] fulfills Preservation & Progress

How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules

module M

System Fω

term e

elaboration e ⟶ e′￼

γ ⊢ e : τ

How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules

module M

System Fω

term e

MetaFM

module M

elaboration

add staging

e ⟶ e′￼

γ ⊢ e : τ

What

we did

• cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]

– Uses an elaboration technique to define semantics

• Type-directed conversion of modules into System Fω terms

– Proves type safety in two steps:

1. Any elaborated term is well-typed under System Fω

2. System Fω [Girard 1972] fulfills Preservation & Progress

How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules

module M

System Fω

term e

MetaFM

module M

System Fω

term e

elaboration

add staging

Γ ⊢ M : ξ ↝ e
γ ⊢n e : τ
e n⟶ e′￼

e ⟶ e′￼

γ ⊢ e : τ

add staging
What

we did

• Our work:

– Also proves type safety in two steps:

1. Any elaborated term is well-typed under System Fω

2. System Fω fulfills Preservation & Progress

elaboration

D ::= valn X : T
| type X :: K
| module X : S
| include S

B ::= valn X = E
| type X = T
| module X = M
| include M

Source Syntax

S ::= sig D end
| (X : S) → S
| S with type X = T

signatures

modulesbindings

declarations

• Almost the same as F-ing Modules [Rossberg+ 2014] except for

• and were shorthand for and

valn X

∼val val val0 val1

M ::= X | M . X
| struct B end
| fun(X : S) → M
| X X
| X :> S

var. & projection

structures

sealing

functor abs./app.}

F-ing Modules

MetaFM System Fω

System Fω

higher- 
kinded

D ::= valn X : T
| type X :: K
| module X : S
| include S

B ::= valn X = E
| type X = T
| module X = M
| include M

Source Syntax

S ::= sig D end
| (X : S) → S
| S with type X = T

signatures

modulesbindings

declarations

• Almost the same as F-ing Modules [Rossberg+ 2014] except for

• and were shorthand for and

valn X

∼val val val0 val1

M ::= X | M . X
| struct B end
| fun(X : S) → M
| X X
| X :> S

var. & projection

structures

sealing

functor abs./app.}

F-ing Modules

MetaFM System Fω

System Fω

higher- 
kinded

 specifies for which stage 
 the value is defined
n

X

• An extension of System Fω [Girard 1972] with staging constructs

• Allows existentials only at stage 0

– This suffices for the elaboration of MetaFM

– Has no difficulty in mixing existentials and staging

Target Language:

System Fω

kinds κ ::= ∙ ∣ κ → κ

e ::= ⋯ ∣ pack (τ, e) as ∃α . τ ∣ ⋯ ∣ ⟨e⟩ ∣ ∼eterms

τ ::= α ∣ τ τ ∣ ∃α :: κ . τ ∣ ⋯ ∣ ⟨τ⟩

code types

bracket

higher-kinded 
types

escape

F-ing Modules

MetaFM System Fω

System Fω

• Leaving types out of account, elaboration is simply like:

• Though somewhat naïve in that it changes binding time, 
this elaboration at least fulfills type safety

– Related issues will be discussed later

Essence of 
Elaboration

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X)
n

(at stage)n

F-ing Modules

MetaFM System Fω

System Fω

1. Any elaborated term is well-typed:

2. Target type safety:

Correctness of MetaFM

Theorem

If , then .Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋

Theorem (Preservation).

If and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress).

If and , then 
 is a value at stage , 

or there exists such that .

⊢≥1 γ γ ⊢n e : τ
e n

e′￼ e n⟶ e′￼

F-ing Modules

MetaFM System Fω

System Fω

F-ing Modules

MetaFM System Fω

System Fω

✔︎

✔︎

• Cross-stage persistence (CSP) [Taha & Sheard 2000]

– A multi-stage feature that enables us to use 

one common value at more than one stage

– Useful, e.g., when one wants to use basic functions 

(such as (+) or List.map) at both compile-time and runtime

Extension with Cross-Stage Persistence

• Cross-stage persistence (CSP) [Taha & Sheard 2000]

– A multi-stage feature that enables us to use 

one common value at more than one stage

– Useful, e.g., when one wants to use basic functions 

(such as (+) or List.map) at both compile-time and runtime

• Formalization:

– Add a binding syntax:

– Extend both source & target type systems with stage var.

• A limited version of env. classifiers [Taha & Nielsen 2003] 

or transition var. [Tsukada+ 2009] [Hanada+ 2014]

• … See our paper for detail!

B ::= valn X = E ∣ val≥n X = E ∣ ⋯

Extension with Cross-Stage Persistence

 will be bound as a value 
 usable at any stage
X

n′￼ (≥ n)

• Brief introduction to multi-stage programming

• Motivating examples

• Formalization

• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion

Outline

• Does not support the Run primitive [Taha+ 1997]

– Example: run (genpower 3) 5 125

– Can perhaps be overcome by some orthogonal methods

• Cannot extend with first-class modules

– Currently regards all modules as stage-0 stuff

• Cannot accommodate features with effects 
such as mutable refs

– Because of the binding-time change

Limitations

Stage-1 expressions containing mutable refs are 
converted to target expressions that have unintended behavior

Issues on Mutable Refs

elaboration

Will generate

λ().

 (ref 42) := 57;

 (λn.) !(ref 42)

which prints 42

M.main () is expected to print 57

val x = ref 42

val main () =
 x := 57;
 print !x

module M = struct

end

let M’ =
 let x’ = in
 let main’ =

 in
 { x = x’ ; main = main’ }

print’~ !~ x’

~ := 57;x’
λ().

ref 42

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X)
n

Recall: elaboration is like:

• We can probably define better elaboration rules 
by using static interpretation [Elsman 1999] [Bochao+ 2010]

– Converts module structures into a flat list of bindings 

of the form (with functor applications resolved)

– We implemented promising elaboration rules for SATYSFI [Suwa 2018] 
and observed that they work fine with mutable refs

• SATYSFI: An ML-like statically typed language for typesetting documents

– Let-insertion [Danvy & Fillinski 1990] [Sato+ 2020] could also be effective, 
but it may complicate semantics and its correctness

valn x = e

Ongoing Work: Refine Elaboration

val x = ref 42

val main () =
 x := 57;
 print !x

module M = struct

end

(val1 precedes’ = λts1. λts2.);

(val0 generate’ = λts.);

(val1 x’ = ref 42);
(val1 main’ = λ().

 x’ := 57;

 print’ !x’)

elaboration

Related Work 1: Staging Modules
Staging beyond terms [Inoue, Kiselyov, & Kameyama 2016]

Program generation for ML modules [Watanabe & Kameyama 2018]

Module generation without regret [Sato, Kameyama, & Watanabe 2020]

The studies above MetaFM (ours)

Basic purpose

Elimination of overheads 
caused by functors 
by using staging

Provide a realistic module system
for MSP, especially from the
viewpoint of type abstraction

Language
design

Staging whole 
module expressions

• Seems ineffective for the 

purpose of type abstraction

Staging each item individually

Related Work 2: MacoCaml [Xie, White, Nicole, 
 & Yallop 2023]

MacoCaml MetaFM (ours)

Basic purpose
Extend OCaml with 
type-safe, composable macros

Provide MSP languages 
with full-blown module features, 
especially with type abs.

Formalization
of semantics

Given directly on 
source syntactic entities

Given through elaboration to 
System Fω

Functors ✖︎ ✔︎ Supported

Type abs. ✖︎ ✔︎ Supported
Avoidance

problem 
[Lillibridge 1997]

[Crary 2020]

🙁 Extending with proj. 
 and type abs. by 
 may well cause this issue

✔︎ Free from this concern 
 thanks to the elaboration

Eval. order

✔︎ Intuitive

• Supports mutable refs

🙁 Currently causes a gap between 
 users’ intuition and 
 actual behavior of target terms

• Probably remedied by ongoing work

CSP ✔︎ By ✔︎ By

Run prim. ✖︎ ✖︎

X :> S
M . X

import↓ val≥n X = E

• MetaFM: a module system that enables us to 
decompose multi-stage programs into modules 
without preventing type abstraction

• Supports many important features:

– Advanced module operations

• (generative) higher-order functors, projection, higher-kinded types, etc.

– Cross-stage persistence [Taha+ 2000] by the form

• Has limitations that should be remedied by future work

– Cannot extend with effectful computation

• Probably overcome by static-interpretation-based elaboration

– Cannot handle first-class modules

val≥n X = E

Conclusion

[Elsman 1999]

1. L. Bochao and A. Ohori. A flattening strategy for SML module compilation and its implementation.
Information and Media Technologies, 5(1), 2010.

2. K. Crary. A focused solution to the avoidance problem. Journal of Functional Programming, 2020.

3. O. Danvy and A. Filinski. Abstracting control. In Proc. of LFP, 1990.

4. M. Elsman. Static interpretation of modules. In Proc. of ICFP, 1999.

5. M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea. Static interpretation of higher-order modules in

Futhark: functional GPU programming in the large. In Proc. of ICFP, 2018.

6. J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D.

thesis, Université Paris VII, 1972.

7. Y. Hanada and A. Igarashi. On cross-stage persistence in multi-stage programming. In Proc. of FLOPS, 2014.

8. J. Inoue, O. Kiselyov, and Y. Kameyama. Staging beyond terms: prospects and challenges. In Proc. of PEPM,

2016.

9. M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. Ph.D. thesis, Carnegie

Mellon University, 1997.

10. A. Rossberg, C. Russo, and D. Dreyer. F-ing modules. Journal of Functional Programming, 24(5), 2014.

11. Y. Sato, Y. Kameyama, and T. Watanabe. Module generation without regret. In Proc. of PEPM, 2020.

12. W. Taha and M. Nielsen. Environment classifiers. In Proc. of POPL, 2003.

13. W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In Proc. of PEPM, 1997.

14. W. Taha and T. Sheard. MetaML and multi-stage programming with explicit annotations. Theoretical

Computer Science, 248(1-2), 2000.

15. T. Tsukada and A. Igarashi. A logical foundation for environment classifiers. In Proc. of TLCA. volume 5608

of Lecture Notes in Computer Science, 2009.

16. T. Watanabe and Y. Kameyama. Program generation for ML modules (short paper). In Proc. of PEPM, 2018.

17. N. Xie, L. White, O. Nicole, and J. Yallop. MacoCaml: staging composable and compilable macros. In Proc.

of ICFP, 2023.

References

Appendix A:

Auxiliary Materials

• Transparent declarations of types:

– where should be inferred from

• Local bindings by projection:

– where is fresh

• Functor app. and sealing generalized for arbitrary modules:

– where , , and are fresh

type X = T := include (struct type X :: K end with type X = T)

K T

let B in M := (struct B; module X = M end) . X
let B in E := (struct B; val X = E end) . X

X

M1 M2 := let module X1 = M1; module X2 = M2 in X1 X2

M :> S := let module X = M in X :> S
X1 X2 X

Syntax Sugars [Rossberg, Russo, & Dreyer 2014]

• You cannot simply reject entities that refer to local types:

• But, for a module depending on some local types, 
in general there’s no principal signature that avoids 
mentioning the local types escaping the scope

– Both M.(Bar x) and M.(Bar y) 
should type-check, but 
no signature for M that avoids 
mentioning foo achieves it 
(without special mechanisms)

Avoidance Problem [Lillibridge 1997] [Crary 2020]

let Local =

 :> sig

 type t

 val x : t

 end

in Local.x

⋯
let Local =

 :> sig

 type t = int

 val x : t

 end

in Local.x

⋯
✖︎ Rejected
Type Local.t 
is escaping 
its scope

✔︎ OK
Assigned type 
Local.t (= int)

module M =

 let type foo = Foo in

 :> sig

 type dummy α = foo

 type bar = Bar of foo

 val x : dummy int

 val y : dummy bool

 end

⋯

module Timestamp :> sig
 type t
 val make : int -> t
￼
end = struct
 type t = int (* Internally in Unix time *)
 val make ts = ts

end

⋯

⋯

Staging Modules isn’t Effective

module GenTimestamp :> sig
 val generate : string -> Timestamp.t
end = struct
 val generate s =
 match parse_datetime s with
 | None -> failwith “invalid datetime”
 | Some ts -> (lift ts)
end

Timestamp.make ~

For type abstraction,

we have to leave

at least one fun. app.

at stage 1

We have to make a backdoor 
that exposes internal details

Appendix B:

Basic Elaboration Rules

Example of Elaboration
∃β :: ∙ . {

l𝚝 ↦ ⦗= β :: ∙ ⦘,

l𝚙𝚛𝚎𝚌𝚎𝚍𝚎𝚜 ↦ ⦗β → β → bool⦘1,

l𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎 ↦ ⦗string → ⟨β⟩⦘0,
…}

sig

 type t :: *

 val precedes : t -> t -> bool

 ~val generate : string -> t

end

⋯

(Key : sig

 type t :: *

 val≥0 compare : t -> t -> int

end) -> sig

 type t :: * -> *

 val empty : ∀α. t α

 val find_opt :

 ∀α. Key.t -> t α -> option α

 ~val generate :

 ∀α. list (Key.t × α) -> t α

end

⋯

∀χ :: ∙ . {
l𝚝 ↦ ⦗= χ :: ∙ ⦘,

l𝚌𝚘𝚖𝚙𝚊𝚛𝚎 ↦ ⦗χ → χ → int⦘≥0

} → ∃β :: ∙ → ∙ . {
l𝚝 ↦ ⦗= β :: ∙ → ∙ ⦘,

l𝚎𝚖𝚙𝚝𝚢 ↦ ⦗∀α :: ∙ . β α⦘1,

l𝚏𝚒𝚗𝚍_𝚘𝚙𝚝 ↦ ⦗∀α :: ∙ . χ → β α → option α⦘1,

l𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎 ↦ ⦗∀α :: ∙ . list (χ × α) → ⟨β α⟩⦘0,
…}

• Internal representation of signatures used in type-checking

• Updates from F-ing Modules [Rossberg+ 2014] and Fω types:

– The stage number superscript of

– Code types:

n ⦗τ⦘n

Semantic Signatures & Target Types

ξ ::= ∃α :: κ . Σ

concrete sig.

abstract sig.

Σ ::= ⦗τ⦘n

| ⦗= τ :: κ⦘
| {lX : Σ}
| ∀α :: κ . Σ → ξ (internal) functor sig.

(internal) structure sig.

value items for stage n
type items

τ ::= α ∣ τ τ ∣ ⋯ ∣ ⟨τ⟩

Signature Elaboration
“Under type env. , sig. is 
interpreted as abstract sig. .”

Γ S
ξΓ ⊢ S ↝ ξ

Γ ⊢ D ↝ ∃b . R

Γ ⊢ D ↝ ∃b . R

Γ ⊢ D ↝ ∃b . R
Γ ⊢ sig D end ↝ ∃b . {R}

Γ ⊢ S1 ↝ ∃b . Σ1 Γ, b, X : Σ1 ⊢ S2 ↝ ξ2

Γ ⊢ (X : S1) → S2 ↝ ∃ϵ . (∀b . Σ1 → ξ2)

Γ ⊢ D1 ↝ ∃b1 . R1 dom b1 ∩ tv Γ = ∅
Γ, b1, R1 ⊢ D2 ↝ ∃b2 . R2 dom b2 ∩ dom b1 = ∅

Γ ⊢ D1 ⋅ D2 ↝ ∃b1b2 . R1 ⊎ R2Γ ⊢ ϵ ↝ ∃ϵ . ∅

Γ ⊢ T :: ∙ ↝ τ
Γ ⊢ valn X : T ↝ ∃ϵ . {lX ↦ ⦗τ⦘n}

Γ ⊢ K ↝ κ
Γ ⊢ type X :: K ↝ ∃α :: κ . {lX ↦ ⦗= α :: κ⦘}

Γ ⊢ S ↝ ∃b . Σ
Γ ⊢ module X : S ↝ ∃b . {lX ↦ Σ}

Γ ::= ⋅ | Γ, X : Σ
| Γ, α :: κ

Introduces

type var.

Elaboration Rules
Γ ⊢ M : ξ ↝ e

“Under type env. , module expr. is assigned 
abstract sig. and converted to term .”

Γ M
ξ e

Γ ⊢ B : ∃b . R ↝ e
Γ ⊢ struct B end : ∃b . {R} ↝ e

Γ ⊢ S1 ↝ ∃b . Σ1 Γ, b, X : Σ1 ⊢ M2 : ξ2 ↝ e2

Γ ⊢ fun(X : S1) → M2 : (∀b . Σ1 → ξ2) ↝ (Λb . λX1 . e2)

Γ(X1) = ∀b . Σ → ξ Γ(X2) = Σ2 Γ ⊢ Σ2 ⩽ ∃b . Σ ↑ τ ↝ f
Γ ⊢ X1 X2 : [τ/b]ξ ↝ X1 τ (f X2)

Subtyping produces

embodied types 

and an injection fun.

Γ ⊢ B : ∃b . R ↝ e
(nil and cons; elaboration is
complicated due to 
intro./elim. of)∃

Elaboration Rules
Γ ⊢ B : ∃b . R ↝ e

Γ ⊢ M : ∃b . Σ ↝ e
Γ ⊢ module X = M : ∃b . {lX ↦ Σ} ↝ {lX ↦ e}

Γ ⊢n E : τ ↝ e
Γ ⊢ valn X = E : ∃ϵ . {lX ↦ ⦗τ⦘n} ↝ {lX ↦ ⟨⋯⟨{𝚟𝚊𝚕 = e}⟩⋯⟩}{ {n n

Γ ⊢n E : τ ↝ e

Γ ⊢ M : ∃b . {R} ↝ e R(lX) = ⦗τ⦘n ⌊Γ⌋ ⊢ τ :: ∙
Γ ⊢n M . X : τ ↝ (∼⋯∼ (unpack (b, y) = e in y#lX))#𝚟𝚊𝚕{n

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X)
n

Essentially, we do something like the following internally:

()

• : Embedding of type env. to System Fω ones

• , : Embedding of semantic sig. to System Fω types

⌊Γ⌋

⌊ξ⌋ ⌊Σ⌋

Elaboration Preserves Typing

Theorem

• If , then .

• If , then .

Γ ⊢n E : τ ↝ e ⌊Γ⌋ ⊢n e : τ
Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋

• Since System Fω has type equivalence, 
proving Inversion Lemma etc. is not so trivial

– Chapter 30 in TaPL [Pierce 2002] handles this topic

Target Type Safety

Theorem (Preservation of System Fω).

If and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress of System Fω).

If and , then is a value at stage , or 
there exists such that .

⊢≥1 γ γ ⊢n e : τ e n
e′￼ e n⟶ e′￼

 : all entries of the form in satisfy ⊢≥1 γ x : τn γ n ≥ 1

Appendix C:

Cross-Stage Persistence

An Example for CSP: MakeMap (Recall)
• Implementing the macro generate requires 

the comparison function on keys (as well as find_opt etc.)

~

module MakeMap :> (Key : Ord) -> sig
 type t :: * -> *
 val empty : ∀α. t α
 val find_opt : ∀α. Key.t -> t α -> option α

 ~
end = fun(Key : Ord) -> struct
 type t α = Leaf | Node of (* Balanced binary tree *)
 val empty = Leaf
 val find_opt key map =

 ~
end

val generate : ∀α. list (Key.t × α) -> t α

val generate kvs =

 Comparison function Key.compare : t -> t -> int 
 should also be usable at stage 0 here! 
 (not only at stage 1 in ordinary functions)

• We must assert that bodies of depend only on 
CSP values (i.e. those bound by , not by)

• Local variables in of should also be allowed

• Extend both source and target with stage var.

E val≥n X = E
val≥k valk

E val≥n X = E

σ

s ::= n | n ∔ σ Γ ::= ⋯ | Γ, σ Γ ⊢s E : τ ↝ e

γ ::= ⋯ | γ, σ γ ⊢s e : τ

How to Type-check CSP Items

non-CSP Can be instantiated to any stage n′￼ (≥ n)

• Extend System Fω terms & types for :

• Extend typing rules:

σ

How to Extend Target Language with CSP

e ::= ⋯
| ⟨e⟩σ | ∼σ e
| Λσ . e | e↑s

staging constructs with σ

stage variable abs./app.

τ ::= ⋯ | ⟨τ⟩σ | ∀σ . τ γ ::= ⋯ | γ, σ

σ ∈ γ γ ⊢n+σ e : τ
γ ⊢n ⟨e⟩σ : ⟨τ⟩σ

σ ∈ γ γ ⊢n e : ⟨τ⟩σ

γ ⊢n+σ ∼σ e : τ

σ ∉ γ γ, σ ⊢0 e : τ
γ ⊢0 Λσ . e : ∀σ . τ

γ ⊢0 e : ∀σ . τ γ ⊢ s
γ ⊢0 e↑s : [s/σ]e

How to Extend Elaboration for CSP

σ ∉ Γ Γ, σ ⊢n∔σ E : τ ↝ e
Γ ⊢ val≥n X = E : ∃ϵ . {lX ↦ ⦗τ⦘≥n} ↝ {lX ↦ Λσ . ⟨⟨⋯⟨{𝚟𝚊𝚕 = e}⟩⋯⟩⟩σ}{ {n n

Γ ⊢ B : ∃b . R ↝ e

Σ ::= ⋯ ∣ ⦗τ⦘≥n

CSP Does Not Break Type Safety

Theorem (Preservation of System Fω).

If and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress of System Fω).

If and , then is a value at stage , or 
there exists such that .

⊢≥1 γ γ ⊢n e : τ e n
e′￼ e n⟶ e′￼

 : all entries of the form in satisfy ⊢≥1 γ x : τs γ s ≥ 1

Theorem

• If , then .

• If , then .

Γ ⊢s E : τ ↝ e ⌊Γ⌋ ⊢s e : τ
Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋

