An ML-Style Module System for Cross-Stage Type Abstraction in Multi-Stage Programs

FLOPS 2024

2024-05-15 @ Kumamoto, Japan

<u>Takashi Suwa (1, 2)</u> Atsushi Igarashi (1)

(1) Kyoto University (2) National Institute of Informatics

Backgrounds

Multi-stage programming (MSP) [Davies 1996] [Taha & Sheard 1997]

- One way to formalize languages for metaprogramming
- Useful as a basis of:
 - macros (i.e. compile-time code generation)
 - program specialization (i.e. runtime code generation)
- Has a notion of stages
- One can write code generation in a type-safe manner
 - The well-typedness of generated code is statically guaranteed

Motivation: MSP with Modules

- Just as well as ordinary languages, MSP languages should have a module system [McQueen 1986]
- Type abstraction by signatures is nice to have
 - Enables us to make modules loosely-coupled

Our Work: *MetαFM*

- A module system useful for decomposing multi-stage programs into modules without preventing type abstraction
- Major features:
 - Value items for different stages can be defined in a single structure (i.e. struct ... end)
 - Covers many full-fledged module functionalities such as:
 - (generative) higher-order functors
 - (syntactically unrestricted) projections
 - the with type-construct
 - higher-kinded types
- Formalization is based on *F-ing Modules* [Rossberg, Russo, & Dreyer 2014]

A Teaser for Motivating Examples

A module for handling absolute timestamps **equipped with a macro** that converts a text to a timestamp

- The macro does not reveal the internal of type Timestamp.t
- Type abstraction covers both compile-time and runtime

```
module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t
  ...
  ~ val generate : string -> (t)
end = struct
  (* Implementation omitted *)
end
```

Summary of Contributions

- Observe that value items for different stages should be able to coexist in a single structure for type abstraction
- Exemplify that such a design is achievable without hampering many realistic module features by defining *MetαFM* and proving its type safety
- Give System $F\omega^{()}$, a type-safe extension of System F ω [Girard 1972] with staging features (as a target language)
- Also support *cross-stage persistence* [Hanada+ 2014] [Taha+ 2000]
 - A staging feature that enables us to use one common value at more than one stage

Outline

Brief introduction to multi-stage programming

- Motivating examples
- Formalization
- Discussions
 - Limitations
 - (Ongoing) future work
 - Related work
 - Conclusion

Syntax

A minimal language similar to MetaML [Taha & Sheard 1997]:

$$e ::= x \mid e \mid e \mid \lambda x \cdot e \mid \cdots \mid \langle e \rangle \mid \sim e$$

bracket escape

• Graphical intuition:

Bracket $\langle e \rangle$ is "convex"

"Forms a code fragment for the next stage" Escape $\sim e$ is "concave"

"*e* evaluates to a code fragment at the prev. stage and fills the hole"

Especially when #stages = 2:

Stage 1 ≈ runtime
Stage 0 ≈ compile-time

Essence of Operational Semantics

(Especially when #stages = 2)

- Only subexpressions at stage 0 are evaluated by the ordinary CBV β-reduction
- Escape ~ cancels bracket $\langle \rangle$ at stage 1
 - when a code fragment is directly inside the hole and contains no nested holes

- When the whole program reaches $\langle e \rangle$ with no holes:
 - That's the end of macro expansion
 - Then, e is used as an ordinary program

Example

- genpower:
 - Receives $m \in \mathbb{N}$ and returns code for the *m*-th power function

cf. the usual non-staged power function

let cubic = power 3 **in** …

- cubic incurs recursive calls at runtime

let rec aux n s =
 if n <= 0 then (1) else

$$\langle \neg s \ast \neg (aux (n - 1) s) \rangle$$
let genpower n = $\langle \lambda x \cdot \neg (aux n \langle x \rangle) \rangle$
genpower 2 $\longrightarrow^* \langle \lambda a \cdot \neg (aux 2 \langle a \rangle) \rangle$
 $\longrightarrow^* \langle \lambda a \cdot \neg (aux 2 \langle a \rangle) \rangle$
 $\longrightarrow^* \langle \lambda a \cdot \neg (aux 1 \langle a \rangle) \rangle$

let rec aux n s =
 if n <= 0 then (1) else

$$\langle \neg s \ast \neg (aux (n - 1) s) \rangle$$
let genpower n = $\langle \lambda \times \cdot \neg (aux n \langle X \rangle) \rangle$
genpower 2 \longrightarrow ($\lambda a. \sim (aux 2 \langle a \rangle)$)
 \longrightarrow ($\lambda a. \sim (aux 2 \langle a \rangle)$)
 \longrightarrow ($\lambda a. \sim (aux 1 \langle a \rangle)$))
 \longrightarrow ($\lambda a. \sim (a \ast \sim (aux 1 \langle a \rangle))$)
 \longrightarrow ($\lambda a. \sim (a \ast \sim (a \ast \sim (aux 0 \langle a \rangle)))$)

let rec aux n s =
 if n <= 0 then (1) else
 (~s * ~(aux (n - 1) s)))
let genpower n = (
$$\lambda x$$
. ~(aux n (x)))
genpower 2 \longrightarrow (λa . ~(aux n (x)))
 \longrightarrow (λa . ~(aux 2 (a)))
 \longrightarrow (λa . ~(aux 2 (a)))
 \longrightarrow (λa . ~(aux 1 (a))))
 \longrightarrow (λa . ~(a * ~(aux 1 (a))))
 \longrightarrow (λa . ~(a * ~(a * ~(aux 0 (a)))))
 \longrightarrow (λa . ~(a * ~(a * (a * 1))))
 \longrightarrow (λa . ~(a * (a * 1)))
 \longrightarrow (λa . a * (a * 1))

Minimal Type System for Staging

[Taha & Sheard 1997]

- **Code types** are added: $\tau ::= \cdots \mid \langle \tau \rangle$
 - "The type for code fragments that will be expressions of type τ at the next stage"
 - e.g. genpower : int $\rightarrow \langle int \rightarrow int \rangle$
- Especially prevents situations where:
 - finally produced code contains an unbound variable

- generated code is ill-typed

$$(\lambda t. \langle -t * 3 \rangle) \langle true \rangle \longrightarrow \langle true * 3 \rangle$$

Outline

Brief introduction to multi-stage programming

Motivating examples

- Formalization
- Discussions
 - Limitations
 - (Ongoing) future work
 - Related work
 - Conclusion

A module for handling absolute timestamps:

```
module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t
  ...
end = struct
  type t = int (* Internally in Unix time *)
  val precedes ts1 ts2 = ts1 < ts2
  val advance_by_dates ts dates =
  ...
end</pre>
```

It would be nice if we can use a macro like the following:

```
module Timestamp :> sig
  type t
 val precedes : t -> t -> bool
 val advance_by_dates : t -> int -> t
  ~ val generate : string -> (t)
end = struct
  type t = int (* Internally in Unix time *)
 val precedes ts1 ts2 = ts1 < ts2</pre>
 val advance_by_dates ts dates =
  ∼ val generate s =
     match parse_datetime s with
                -> failwith "invalid datetime"
       None
       Some ts -> lift ts
```

end


```
let our_slot_in_flops_2024 : Timestamp.t =
    ~(Timestamp.generate "2024-05-15T16:30+09:00")
in ···
```


An Example involving Functors

 A macro offered by MakeMap (= OCaml's Map.Make) that converts a list of key-value pairs to a map beforehand

```
module StringMap = MakeMap(String)
let month_abbrev_to_int (s : string) : option int =
   StringMap.find_opt s
   ~ (StringMap.generate [("Jan", 1), ..., ("Dec", 12)]
```

```
module MakeMap :> (Key : Ord) -> sig
type t :: * -> *
val empty : ∀α. t α
val find_opt : ∀α. Key.t -> t α -> option α
...
~ val generate : ∀α. list (Key.t × α) -> ⟨t α⟩
end = fun(Key : Ord) -> struct
type t α = Leaf | Node of … (* Balanced binary tree *)
val empty = Leaf
val find_opt key map = …
...
~ val generate kvs = …
end
```

Outline

- Brief introduction to multi-stage programming
- Motivating examples

Formalization

- Discussions
 - Limitations
 - (Ongoing) future work
 - Related work
 - Conclusion

How to Define Semantics & Type Safety

- cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]
 - Uses an *elaboration* technique to define semantics
 - Type-directed conversion of modules into System F ω terms
 - Proves type safety in two steps:
 - 1. Any elaborated term is well-typed under System $F\omega$
 - 2. System F ω [Girard 1972] fulfills Preservation & Progress

How to Define Semantics & Type Safety

- cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]
 - Uses an *elaboration* technique to define semantics
 - Type-directed conversion of modules into System F ω terms
 - Proves type safety in two steps:
 - 1. Any elaborated term is well-typed under System $F\omega$
 - 2. System F ω [Girard 1972] fulfills Preservation & Progress

How to Define Semantics & Type Safety

• Our work:

- Also proves type safety in two steps:
 - 1. Any elaborated term is well-typed under System $F\omega^{()}$
 - 2. System $F\omega^{()}$ fulfills Preservation & Progress

Source Syntax

bindings	modules		
$B ::= \mathbf{val}^n \ X = E$	$M ::= X \mid M \cdot X$	var. & projection	
type $X = T$	struct \overline{B} end	structures	
module $X = M$	$ \mathbf{fun}(X:S) \to M$	functor abs /ann	
include M	$\mid X \mid X$		
	X :> S	sealing	
declarations			
$D ::= \operatorname{val}^n X : T$	signatures		
type <i>X</i> :: <i>K</i>	$S ::= \mathbf{sig} \ \overline{D} \ \mathbf{end}$		
higher- module X : S	$\mid (X:S) \to S$		
kinded include S	S with type $\overline{X} = Z$	Т	

- Almost the same as *F-ing Modules* [Rossberg+ 2014] except for $val^n X$
- ~val and val were shorthand for val 0 and val 1

- Almost the same as *F-ing Modules* [Rossberg+ 2014] except for $val^n X$
- ~val and val were shorthand for val⁰ and val¹

Target Language: System Fω⁽⁾

- An extension of System Fw [Girard 1972] with staging constructs
- Allows existentials only at stage 0
 - This suffices for the elaboration of MetaFM
 - Has no difficulty in mixing existentials and staging

terms
$$e ::= \cdots | \operatorname{pack} (\tau, e) \text{ as } \exists \alpha . \tau | \cdots | \langle e \rangle | \sim e$$

higher-kinded
types $\tau ::= \alpha | \tau \tau | \exists \alpha :: \kappa . \tau | \cdots | \langle \tau \rangle$
kinds $\kappa ::= \bullet | \kappa \to \kappa$
 $\operatorname{code types}$

Essence of Elaboration

• Leaving types out of account, elaboration is simply like:

val^{*n*}
$$X = E$$

 $M \cdot X$ (at stage *n*)

let $X = \underbrace{\langle \cdots \langle E \rangle \cdots \rangle}_{n}$

 $\underbrace{\sim \cdots \sim}_{n} (M \cdot X)$

- Though somewhat naïve in that it changes binding time, this elaboration at least fulfills type safety
 - Related issues will be discussed later

Correctness of MetaFM

1. Any elaborated term is well-typed:

Theorem

If $\Gamma \vdash M : \xi \prec e$, then $\lfloor \Gamma \rfloor \vdash^0 e : \lfloor \xi \rfloor$.

2. Target type safety:

Theorem (Preservation). If $\gamma \vdash^n e : \tau$ and $e \xrightarrow{n} e'$, then $\gamma \vdash^n e' : \tau$.

Theorem (Progress). If $\vdash^{\geq 1} \gamma$ and $\gamma \vdash^{n} e : \tau$, then *e* is a value at stage *n*, or there exists *e*' such that $e \stackrel{n}{\longrightarrow} e'$.

Extension with Cross-Stage Persistence

- Cross-stage persistence (CSP) [Taha & Sheard 2000]
 - A multi-stage feature that enables us to use
 one common value at more than one stage
 - Useful, e.g., when one wants to use basic functions (such as (+) or List.map) at both compile-time and runtime

Extension with Cross-Stage Persistence

- Cross-stage persistence (CSP) [Taha & Sheard 2000]
 - A multi-stage feature that enables us to use
 one common value at more than one stage
 - Useful, e.g., when one wants to use basic functions (such as (+) or List.map) at both compile-time and runtime
- Formalization:

X will be bound as a value usable at any stage $n' \ (\ge n)$

- Add a binding syntax: $B ::= \operatorname{val}^n X = E | \operatorname{val}^{\geq n} X = E | \cdots$
- Extend both source & target type systems with stage var.
 - A limited version of *env. classifiers* [Taha & Nielsen 2003] or *transition var*. [Tsukada+ 2009] [Hanada+ 2014]
- ... See our paper for detail!

Outline

- Brief introduction to multi-stage programming
- Motivating examples
- Formalization

Discussions

- Limitations
- (Ongoing) future work
- Related work
- Conclusion

Limitations

- Does not support the *Run primitive* [Taha+ 1997]
 - Example: **run** (genpower 3) 5 \longrightarrow 125
 - Can perhaps be overcome by some orthogonal methods
- Cannot extend with first-class modules
 - Currently regards all modules as stage-0 stuff
- Cannot accommodate features with effects such as mutable refs
 - Because of the binding-time change

Issues on Mutable Refs

Stage-1 expressions containing mutable refs are converted to target expressions that have unintended behavior


```
λ().
  (ref 42) := 57;
  (λn. ···) !(ref 42)
which prints 42
```

Ongoing Work: Refine Elaboration

- We can probably define better elaboration rules by using static interpretation [Elsman 1999] [Bochao+ 2010]
 - Converts module structures into a flat list of bindings of the form $val^n x = e$ (with functor applications resolved)

- We implemented promising elaboration rules for **SATySF**[[Suwa 2018] and observed that they work fine with mutable refs
 - SAT_YSF_I: An ML-like statically typed language for typesetting documents
- Let-insertion [Danvy & Fillinski 1990] [Sato+ 2020] could also be effective, but it may complicate semantics and its correctness

Related Work 1: Staging Modules

- Staging beyond terms [Inoue, Kiselyov, & Kameyama 2016]
- Program generation for ML modules [Watanabe & Kameyama 2018]
- Module generation without regret [Sato, Kameyama, & Watanabe 2020]

	The studies above	MetaFM (ours)
Basic purpose	Elimination of overheads caused by functors by using staging	Provide a realistic module system for MSP, especially from the viewpoint of type abstraction
Language design	 Staging whole module expressions Seems ineffective for the purpose of type abstraction 	Staging each item individually

Related Work 2: MacoCaml [Xie, White, Nicole, & Yallop 2023]

	MacoCaml	MetaFM (ours)
Basic purpose	Extend OCaml with type-safe, composable macros	Provide MSP languages with full-blown module features, especially with type abs.
Formalization of semantics	Given directly on source syntactic entities	Given through elaboration to System Fω ⁽⁾
Functors	*	 Supported
Type abs.	*	Supported
Avoidance problem [Lillibridge 1997] [Crary 2020]	Extending with proj. M.X and type abs. by X :> S may well cause this issue	Free from this concern thanks to the elaboration
Eval. order	 Intuitive Supports mutable refs 	 Currently causes a gap between users' intuition and actual behavior of target terms Probably remedied by ongoing work
CSP	✓ By import [↓]	✓ By $val^{\geq n} X = E$
Run prim.	*	*

Conclusion

- MetaFM: a module system that enables us to decompose multi-stage programs into modules without preventing type abstraction
- Supports many important features:
 - Advanced module operations
 - (generative) higher-order functors, projection, higher-kinded types, etc.
 - **Cross-stage persistence** [Taha+ 2000] by the form $val^{\geq n} X = E$
- Has limitations that should be remedied by future work
 - Cannot extend with effectful computation
 - Probably overcome by static-interpretation-based elaboration
 [Elsman 1999]
 - Cannot handle first-class modules

References

- 1. L. Bochao and A. Ohori. A flattening strategy for SML module compilation and its implementation. Information and Media Technologies, **5**(1), 2010.
- 2. K. Crary. A focused solution to the avoidance problem. Journal of Functional Programming, 2020.
- 3. O. Danvy and A. Filinski. Abstracting control. In Proc. of LFP, 1990.
- 4. M. Elsman. Static interpretation of modules. In Proc. of ICFP, 1999.
- 5. M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea. Static interpretation of higher-order modules in Futhark: functional GPU programming in the large. In *Proc. of ICFP*, 2018.
- 6. J.Y. Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. Ph.D. thesis, Université Paris VII, 1972.
- 7. Y. Hanada and A. Igarashi. On cross-stage persistence in multi-stage programming. In Proc. of FLOPS, 2014.
- 8. J. Inoue, O. Kiselyov, and Y. Kameyama. Staging beyond terms: prospects and challenges. In *Proc. of PEPM*, 2016.
- 9. M. Lillibridge. *Translucent Sums: A Foundation for Higher-Order Module Systems*. Ph.D. thesis, Carnegie Mellon University, 1997.
- 10. A. Rossberg, C. Russo, and D. Dreyer. F-ing modules. Journal of Functional Programming, 24(5), 2014.
- 11. Y. Sato, Y. Kameyama, and T. Watanabe. Module generation without regret. In Proc. of PEPM, 2020.
- 12. W. Taha and M. Nielsen. Environment classifiers. In Proc. of POPL, 2003.
- 13. W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In Proc. of PEPM, 1997.
- 14. W. Taha and T. Sheard. MetaML and multi-stage programming with explicit annotations. *Theoretical Computer Science*, **248**(1-2), 2000.
- 15. T. Tsukada and A. Igarashi. A logical foundation for environment classifiers. In *Proc. of TLCA*. volume 5608 of *Lecture Notes in Computer Science*, 2009.
- 16. T. Watanabe and Y. Kameyama. Program generation for ML modules (short paper). In Proc. of PEPM, 2018.
- 17. N. Xie, L. White, O. Nicole, and J. Yallop. MacoCaml: staging composable and compilable macros. In *Proc. of ICFP*, 2023.

Appendix A: Auxiliary Materials

Syntax Sugars [Rossberg, Russo, & Dreyer 2014]

Transparent declarations of types:

type X = T := include (struct type X :: K end with type X = T)

- where *K* should be inferred from *T*
- Local bindings by projection:

let \overline{B} in $M := (\text{struct } \overline{B}; \text{ module } X = M \text{ end}) \cdot X$ let \overline{B} in $E := (\text{struct } \overline{B}; \text{ val } X = E \text{ end}) \cdot X$

- where X is fresh
- Functor app. and sealing generalized for arbitrary modules:

 $M_1 M_2 :=$ let module $X_1 = M_1$; module $X_2 = M_2$ in $X_1 X_2$

M :> S := let module X = M in X :> S

- where X_1 , X_2 , and X are fresh

Avoidance Problem [Lillibridge 1997] [Crary 2020]

You cannot simply reject entities that refer to local types:

<pre>let Local =</pre>	🗱 Rejected	<pre>let Local =</pre>	V OK
type t	Type Local.t	<pre> :> sig type t = int</pre>	Assigned type
val x : t	is escaping	val x : t	Local.t(= int)
end in Local.x	its scope	end in Local.x	

 But, for a module depending on some local types, in general there's no principal signature that avoids mentioning the local types escaping the scope

```
module M =
  let type foo = Foo in
  ... :> sig
   type dummy α = foo
   type bar = Bar of foo
   val x : dummy int
   val y : dummy bool
  end
```

 Both M. (Bar x) and M. (Bar y) should type-check, but no signature for M that avoids mentioning foo achieves it (without special mechanisms)

Staging Modules isn't Effective

Appendix B: Basic Elaboration Rules

Example of Elaboration

```
sig
type t :: *
val precedes : t -> t -> bool
~val generate : string -> (t)
...
end
```

$$\exists \beta :: \bullet . \{ \\ l_t \mapsto (=\beta :: \bullet), \\ l_{\text{precedes}} \mapsto (\beta \to \beta \to \text{bool})^1, \\ l_{\text{generate}} \mapsto (\text{string} \to \langle \beta \rangle)^0, \\ \dots \}$$

```
(Key : sig
   type t :: *
   val<sup>≥0</sup> compare : t -> t -> int
end) -> sig
   type t :: * -> *
   val empty : ∀α. t α
   val find_opt :
     ∀α. Key.t -> t α -> option α
   ~val generate :
     ∀α. list (Key.t × α) -> ⟨t α⟩
   ...
end
```

$$\forall \chi :: \bullet . \{ \\ l_{t} \mapsto (= \chi :: \bullet), \\ l_{compare} \mapsto (\chi \to \chi \to int)^{\geq 0} \\ \} \to \exists \beta :: \bullet \to \bullet . \{ \\ l_{t} \mapsto (= \beta :: \bullet \to \bullet), \\ l_{empty} \mapsto (\forall \alpha :: \bullet . \beta \alpha)^{1}, \\ l_{find_opt} \mapsto (\forall \alpha :: \bullet . \chi \to \beta \alpha \to option \alpha)^{1}, \\ l_{generate} \mapsto (\forall \alpha :: \bullet . list (\chi \times \alpha) \to \langle \beta \alpha \rangle)^{0}, \\ \dots \}$$

Semantic Signatures & Target Types

Internal representation of signatures used in type-checking

concrete sig. $\Sigma ::= [\tau]^n$ value items for stage n $| [= \tau :: \kappa]$ type items $| \{\overline{l_X} : \overline{\Sigma}\}$ (internal) structure sig. $| \forall \overline{\alpha} :: \overline{\kappa} . \Sigma \to \xi$ (internal) functor sig. abstract sig. $\xi ::= \exists \overline{\alpha} :: \overline{\kappa} . \Sigma$

- Updates from F-ing Modules [Rossberg+ 2014] and F ω types:
 - The stage number superscript n of $(\tau)^n$
 - Code types: $\tau ::= \alpha | \tau \tau | \cdots | \langle \tau \rangle$

Signature Elaboration

"Under type env. Γ , sig. S is $\Gamma, \alpha :: \kappa$ $\Gamma \vdash S \sim \xi$ interpreted as abstract sig. ξ ." $\Gamma \vdash S_1 \leadsto \exists \boldsymbol{b} \, . \, \Sigma_1 \qquad \Gamma, \boldsymbol{b}, X : \Sigma_1 \vdash S_2 \leadsto \xi_2$ $\Gamma \vdash D \rightsquigarrow \exists b . R$ $\Gamma \vdash \operatorname{sig} D \text{ end} \rightsquigarrow \exists b \, \{R\} \qquad \Gamma \vdash (X : S_1) \rightarrow S_2 \rightsquigarrow \exists \epsilon \, (\forall b \, . \, \Sigma_1 \rightarrow \xi_2)$ $\Gamma \vdash D_1 \rightsquigarrow \exists \boldsymbol{b}_1 . R_1 \qquad \text{dom}\, \boldsymbol{b}_1 \cap \text{tv}\, \Gamma = \emptyset$ $\Gamma \vdash D \sim \exists b R$ $\Gamma, \boldsymbol{b}_1, R_1 \vdash \boldsymbol{D}_2 \thicksim \exists \boldsymbol{b}_2, R_2 \qquad \text{dom}\, \boldsymbol{b}_2 \cap \text{dom}\, \boldsymbol{b}_1 = \emptyset$ $\Gamma \vdash \epsilon \sim \exists \epsilon . \emptyset$ $\Gamma \vdash D_1 \cdot D_2 \sim \exists b_1 b_2 \cdot R_1 \uplus R_2$ Introduces type var. $\Gamma \vdash K \sim \kappa$ $\Gamma \vdash D \rightsquigarrow \exists b . R$ $\Gamma \vdash \mathbf{type} \ X :: K \rightsquigarrow \exists \alpha :: \kappa . \{l_X \mapsto (= \alpha :: \kappa)\}$ $\Gamma \vdash T :: \bullet \sim \tau$ $\Gamma \vdash S \rightsquigarrow \exists b \, . \Sigma$ $\Gamma \vdash \operatorname{val}^n X : T \rightsquigarrow \exists \epsilon \, \{ \, l_X \mapsto (\tau)^n \} \qquad \Gamma \vdash \operatorname{module} X : S \rightsquigarrow \exists b \, \{ \, l_X \mapsto \Sigma \}$

50

 $\Gamma ::= \cdot \mid \Gamma, X : \Sigma$

Elaboration Rules

 $\Gamma \vdash M : \xi \thicksim e$ "Under type env. Γ , module expr. M is assigned abstract sig. ξ and converted to term e."

$$\Gamma \vdash B : \exists b . R \prec e$$

$$\Gamma \vdash \text{struct } B \text{ end } : \exists b . \{R\} \prec e$$

$$\Gamma \vdash S_1 \prec \exists b . \Sigma_1 \qquad \Gamma, b, X : \Sigma_1 \vdash M_2 : \xi_2 \prec e_2$$

$$\Gamma \vdash \text{fun}(X : S_1) \rightarrow M_2 : (\forall b . \Sigma_1 \rightarrow \xi_2) \prec (\Lambda b . \lambda X_1 . e_2)$$

$$\Gamma(X_1) = \forall b . \Sigma \rightarrow \xi \qquad \Gamma(X_2) = \Sigma_2 \qquad \Gamma \vdash \Sigma_2 \leq \exists b . \Sigma \uparrow \tau \prec f$$

$$\Gamma \vdash X_1 X_2 : [\tau/b] \xi \prec X_1 \tau (f X_2)$$

$$|\Gamma \vdash \boldsymbol{B} : \exists \boldsymbol{b} . R \thicksim \boldsymbol{e}$$

(nil and cons; elaboration is complicated due to intro./elim. of ∃)

$$\begin{split} \Gamma \vdash B_1 : \exists \boldsymbol{b}_1. \ R_1 \rightsquigarrow e_1 & \text{dom } \boldsymbol{b}_1 \cap \text{domtv } \Gamma = \varnothing \\ \Gamma, \boldsymbol{b}_1, R_1 \vdash \boldsymbol{B}_2 : \exists \boldsymbol{b}_2. \ R_2 \rightsquigarrow e_2 & \text{dom } \boldsymbol{b}_2 \cap \text{dom } \boldsymbol{b}_1 = \varnothing \\ \hat{r}_1 = \{l_X \mapsto x_1 \# l_X \mid l_X \in \text{dom } R_1 \setminus \text{dom } R_2\} & \boldsymbol{b} = \boldsymbol{b}_1 \cdot \boldsymbol{b}_2 \\ \hat{r}_2 = \{l_X \mapsto x_2 \# l_X \mid l_X \in \text{dom } R_2\} & R = R_1 + R_2 \\ \hline \Gamma \vdash B_1 \cdot \boldsymbol{B}_2 : \exists \boldsymbol{b}. \ R \rightsquigarrow \textbf{unpack } (\boldsymbol{b}_1, x_1 : \lfloor \{ \| R_1 \} \rfloor) = e_1 \textbf{ in} \\ \textbf{unpack } (\boldsymbol{b}_2, x_2 : \lfloor \{ \| R_2 \} \rfloor) = \\ \mathbf{let } \{X : \lfloor \Sigma \rfloor = x_1 \# l_X \mid (l_X \mapsto \Sigma) \in R_1\} \textbf{ in } e_2 \textbf{ in} \\ \mathbf{pack } (\boldsymbol{b}, \{ \hat{r}_1 \uplus \hat{r}_2 \}) \textbf{ as } \lfloor \exists \boldsymbol{b}. \ \{ | R | \} \rfloor \end{split}$$

Elaboration Rules

$$\Gamma \vdash^{n} E : \tau \rightsquigarrow e$$

$$\overline{\Gamma \vdash \operatorname{val}^{n} X = E} : \exists e . \{l_{X} \mapsto (\tau)^{n}\} \rightsquigarrow \{l_{X} \mapsto \langle \cdots \langle \{\operatorname{val} = e\} \rangle \cdots \rangle \}$$

$$\overline{\Gamma \vdash^{n} E} : \tau \rightsquigarrow e$$

$$\frac{\Gamma \vdash M : \exists b . \{R\} \rightsquigarrow e}{\Gamma \vdash^{n} M . X} : \tau \rightsquigarrow (\sim \cdots \sim (\operatorname{unpack} (b, y) = e \text{ in } y \# l_{X})) \# \operatorname{val}}{n}$$

Essentially, we do something like the following internally:

valⁿ
$$X = E$$

 $M \cdot X$
 $M \cdot X$
 $M \cdot X$
 $M \cdot X$
 $M \cdot X$

Elaboration Preserves Typing

Theorem

- If $\Gamma \vdash^{n} E : \tau \sim e$, then $\lfloor \Gamma \rfloor \vdash^{n} e : \tau$.
- If $\Gamma \vdash M : \xi \prec e$, then $\lfloor \Gamma \rfloor \vdash^0 e : \lfloor \xi \rfloor$.
- $[\Gamma]$: Embedding of type env. to System F $\omega^{(r)}$ ones
- $\lfloor \xi \rfloor$, $\lfloor \Sigma \rfloor$: Embedding of semantic sig. to System F $\omega^{(k)}$ types

Target Type Safety

Theorem (Preservation of System $F\omega^{(r)}$).

If $\gamma \vdash^n e : \tau$ and $e \xrightarrow{n} e'$, then $\gamma \vdash^n e' : \tau$.

Theorem (Progress of System $F\omega^{(>)}$).

If $\vdash^{\geq 1} \gamma$ and $\gamma \vdash^{n} e : \tau$, then *e* is a value at stage *n*, or there exists *e'* such that $e \xrightarrow{n} e'$.

 $\vdash^{\geq 1} \gamma :\Leftrightarrow$ all entries of the form $x : \tau^n$ in γ satisfy $n \geq 1$

- Since System $F\omega^{(r)}$ has type equivalence, proving Inversion Lemma etc. is not so trivial
 - Chapter 30 in TaPL [Pierce 2002] handles this topic

Appendix C: Cross-Stage Persistence

An Example for CSP: MakeMap (Recall)

 Implementing the macro generate requires the comparison function on keys (as well as find_opt etc.)

```
module MakeMap :> (Key : Ord) -> sig
type t :: * -> *
val empty : ∀α. t α
val find_opt : ∀α. Key.t -> t α -> option α
...
~ val generate : ∀α. list (Key.t × α) -> ⟨t α⟩
end = fun(Key : Ord) -> struct
type t α = Leaf | Node of ... (* Balanced binary tree *)
val empty = Leaf
val find_opt key map = ...
...
~ val generate kvs = ...
end
```

Comparison function Key.compare : t -> t -> int should also be usable at stage 0 here! (not only at stage 1 in ordinary functions)

How to Type-check CSP Items

- We must assert that bodies E of $val^{\geq n} X = E$ depend only on CSP values (i.e. those bound by $val^{\geq k}$, not by val^{k})
- Local variables in E of val^{$\geq n$} X = E should also be allowed

- Extend both source and target with stage var. σ

non-CSP **Can be instantiated to any stage** $n' (\ge n)$ $s ::= n \mid n \neq \sigma$ $\Gamma ::= \cdots \mid \Gamma, \sigma$ $\Gamma \vdash^{s} E : \tau \rightsquigarrow e$ $\gamma ::= \cdots \mid \gamma, \sigma$ $\gamma \vdash^{s} e : \tau$

How to Extend Target Language with CSP

• Extend System $F\omega^{()}$ terms & types for σ :

$$e ::= \cdots$$

$$|\langle e \rangle^{\sigma}| \sim^{\sigma} e \quad \text{staging constructs with } \sigma$$

$$|\Lambda \sigma . e | e \uparrow s \quad \text{stage variable abs./app.}$$

$$\tau ::= \cdots |\langle \tau \rangle^{\sigma} | \forall \sigma . \tau \quad \gamma ::= \cdots | \gamma, \sigma$$

• Extend typing rules:

$$\frac{\sigma \in \gamma \qquad \gamma \vdash^{n+\sigma} e : \tau}{\gamma \vdash^n \langle e \rangle^{\sigma} : \langle \tau \rangle^{\sigma}} \qquad \frac{\sigma \in \gamma \qquad \gamma \vdash^n e : \langle \tau \rangle^{\sigma}}{\gamma \vdash^{n+\sigma} \sim^{\sigma} e : \tau}$$

$$\frac{\sigma \notin \gamma \qquad \gamma, \sigma \vdash^0 e : \tau}{\gamma \vdash^0 \Lambda \sigma. e : \forall \sigma. \tau} \qquad \frac{\gamma \vdash^0 e : \forall \sigma. \tau \qquad \gamma \vdash s}{\gamma \vdash^0 e^{\uparrow} s : [s/\sigma]e}$$

How to Extend Elaboration for CSP

$$\Sigma ::= \cdots \mid (\tau)^{\geq n}$$

$$\Gamma \vdash B : \exists b \, . \, R \thicksim e$$

 $\sigma \notin \Gamma \qquad \Gamma, \sigma \vdash^{n \dotplus \sigma} E : \tau \leadsto e$

 $\Gamma \vdash \mathbf{val}^{\geq n} X = E : \exists \epsilon . \{l_X \mapsto (\tau)^{\geq n}\} \sim \{l_X \mapsto \Lambda \sigma . \langle \langle \cdots \langle \{ \mathtt{val} = e \} \rangle \cdots \rangle \rangle^{\sigma} \}$

CSP Does Not Break Type Safety

Theorem

- If $\Gamma \vdash^{s} E : \tau \sim e$, then $\lfloor \Gamma \rfloor \vdash^{s} e : \tau$.
- If $\Gamma \vdash M : \xi \prec e$, then $\lfloor \Gamma \rfloor \vdash^0 e : \lfloor \xi \rfloor$.

Theorem (Preservation of System F $\omega^{(r)}$). If $\gamma \vdash^n e : \tau$ and $e \xrightarrow{n} e'$, then $\gamma \vdash^n e' : \tau$.

Theorem (Progress of System F $\omega^{(>)}$).

If $\vdash^{\geq 1} \gamma$ and $\gamma \vdash^{n} e : \tau$, then *e* is a value at stage *n*, or there exists *e'* such that $e \xrightarrow{n} e'$.

 $\vdash^{\geq 1} \gamma :\Leftrightarrow$ all entries of the form $x : \tau^s$ in γ satisfy $s \geq 1$