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Multi-stage programming (MSP) [Davies 1996] [Taha & Sheard 1997]


• One way to formalize languages for metaprogramming


• Useful as a basis of:

– macros (i.e. compile-time code generation)

– program specialization (i.e. runtime code generation)


• Has a notion of stages


• One can write code generation in a type-safe manner

– The well-typedness of generated code is statically guaranteed

Backgrounds



• Just as well as ordinary languages, MSP languages 
should have a module system [McQueen 1986]


• Type abstraction by signatures is nice to have

– Enables us to make modules loosely-coupled

Motivation: MSP with Modules



• A module system useful for decomposing 
multi-stage programs into modules 
without preventing type abstraction


• Major features:

– Value items for different stages can be defined 

in a single structure (i.e. struct … end)

– Covers many full-fledged module functionalities such as:


• (generative) higher-order functors

• (syntactically unrestricted) projections

• the with type-construct

• higher-kinded types


• Formalization is based on F-ing Modules [Rossberg, Russo, & Dreyer 2014]

Our Work: MetaFM



A module for handling absolute timestamps 
equipped with a macro that converts a text to a timestamp


• The macro does not reveal the internal of type Timestamp.t


• Type abstraction covers both compile-time and runtime

A Teaser for Motivating Examples

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in 
~ )

val generate : string -> t~

module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t
￼

end = struct
  (* Implementation omitted *)
end

⋯



• Observe that value items for different stages should be 
able to coexist in a single structure for type abstraction


• Exemplify that such a design is achievable 
without hampering many realistic module features 
by defining MetaFM and proving its type safety


• Give System Fω  , a type-safe extension of System Fω [Girard 1972] 
with staging features (as a target language)


• Also support cross-stage persistence [Hanada+ 2014] [Taha+ 2000]

– A staging feature that enables us to use 

one common value at more than one stage

Summary of Contributions



• Brief introduction to multi-stage programming


• Motivating examples


• Formalization


• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion

Outline



Syntax

e ::= x ∣ e e ∣ λx . e ∣ ⋯ ∣ ⟨e⟩ ∣ ∼e
bracket escape

“Forms a code fragment

 for the next stage”

Bracket          is “convex”⟨e⟩

“    evaluates to a code fragment 
 at the prev. stage and fills the hole”
e

Escape         is “concave”∼e

Stage 0 ≈ compile-time

Stage 1 ≈ runtime
Especially when 
#stages = 2:

• A minimal language similar to MetaML [Taha & Sheard 1997]:


• Graphical intuition:



(Especially when #stages = 2)


• Only subexpressions at stage 0 are evaluated 
by the ordinary CBV β-reduction


• Escape  cancels bracket  at stage 1

– when a code fragment is directly inside the hole 

and contains no nested holes


• When the whole program reaches  with no holes:

– That’s the end of macro expansion

– Then,  is used as an ordinary program

∼ ⟨ ⟩

⟨e⟩

e

Essence of Operational Semantics



• genpower: 

– Receives  and returns code for the -th power function


– Example use:


• cf. the usual non-staged power function


– cubic incurs recursive calls at runtime

m ∈ ℕ m

Example

⏟m

let cubic = ~ (genpower 3) in 

let cubic = power 3 in 



Example Reduction

      (aux n           ) λx. ~         xlet genpower n = 

let rec aux n s =
  if n <= 0 then    else 

  s     (aux (n - 1) s) ~   * ~

1



Example Reduction
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let rec aux n s =
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1

λa. ~(aux 2 a )genpower 2 

Generates a fresh symbol 
for hygienicity 
(not mentioned henceforth)
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Example Reduction

      (aux n           ) λx. ~         xlet genpower n = 

let rec aux n s =
  if n <= 0 then    else 

  s     (aux (n - 1) s) ~   * ~

1

λa. ~(aux 2 a )

λa. ~ ~ a  * ~(aux 1 a )

λa. ~ a * ~(aux 1 a )

λa. ~ a * ~ a * ~(aux 0 a )

λa. ~ a * ~ a * ~ 1

λa. ~ a * ~ a * 1

λa. a * (a * 1)

genpower 2 



• Code types are added:   

– “The type for code fragments 

 that will be expressions of type  at the next stage”


– e.g. genpower : 


• Especially prevents situations where:

– finally produced code contains an unbound variable


– generated code is ill-typed

τ ::= ⋯ ∣ ⟨τ⟩

τ
int → ⟨int → int⟩

Minimal Type System for Staging

      λx. y

         true * 3(λt.   t      ~   * 3 ) true

[Taha & Sheard 1997]



• Brief introduction to multi-stage programming


• Motivating examples


• Formalization


• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion
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A module for handling absolute timestamps:


It would be nice if we can use a macro like the following:
let our_slot_in_flops_2024 : Timestamp.t =

(Timestamp.generate “2024-05-15T16:30+09:00”
in 
~ )

Example Use of Our Module System

module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t
￼
end = struct
  type t = int (* Internally in Unix time *)
  val precedes ts1 ts2 = ts1 < ts2
  val advance_by_dates ts dates = 
  
end

⋯

⋯



Example Use of Our Module System

~

module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t

  ~￼
end = struct
  type t = int (* Internally in Unix time *)
  val precedes ts1 ts2 = ts1 < ts2
  val advance_by_dates ts dates = 

  ~

end

val generate : string -> t

val generate s =
  match parse_datetime s with
  | None    -> failwith “invalid datetime”
  | Some ts -> lift ts

⋯

⋯

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in 
~ )



~

module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t

  ~￼
end = struct
  type t = int (* Internally in Unix time *)
  val precedes ts1 ts2 = ts1 < ts2
  val advance_by_dates ts dates = 

  ~

end

val generate : string -> t

val generate s =
  match parse_datetime s with
  | None    -> failwith “invalid datetime”
  | Some ts -> lift ts

⋯

⋯

Example Use of Our Module System

Macros do not expose

the internal representation of 
type Timestamp.t as well as 
ordinary values do not

let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in 
~ )



let our_slot_in_flops_2024 : Timestamp.t =
(Timestamp.generate “2024-05-15T16:30+09:00”

in 
~ )

~

module Timestamp :> sig
  type t
  val precedes : t -> t -> bool
  val advance_by_dates : t -> int -> t

  ~￼
end = struct
  type t = int (* Internally in Unix time *)
  val precedes ts1 ts2 = ts1 < ts2
  val advance_by_dates ts dates = 

  ~

end

val generate : string -> t

val generate s =
  match parse_datetime s with
  | None    -> failwith “invalid datetime”
  | Some ts -> lift ts

⋯

⋯

Example Use of Our Module System

Macros do not expose

the internal representation of 
type Timestamp.t as well as 
ordinary values do not

Lifts a value to the next stage

e.g.  lift 5       5



• A macro offered by  MakeMap  (= OCaml’s  Map.Make) 
that converts a list of key-value pairs to a map beforehand

An Example involving Functors

~

module MakeMap :> (Key : Ord) -> sig
  type t :: * -> * 
  val empty : ∀α. t α
  val find_opt : ∀α. Key.t -> t α -> option α
  
  ~
end = fun(Key : Ord) -> struct
  type t α = Leaf | Node of  (* Balanced binary tree *)
  val empty = Leaf
  val find_opt key map = 
  
  ~
end

val generate : ∀α. list (Key.t × α) -> t α

val generate kvs = 

module StringMap = MakeMap(String)

let month_abbrev_to_int (s : string) : option int =
  StringMap.find_opt s

(StringMap.generate [(“Jan”, 1),  , (“Dec”, 12)]~



• Brief introduction to multi-stage programming


• Motivating examples


• Formalization


• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion
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• cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]

– Uses an elaboration technique to define semantics


• Type-directed conversion of modules into System Fω terms


– Proves type safety in two steps:

1. Any elaborated term is well-typed under System Fω

2. System Fω [Girard 1972] fulfills Preservation & Progress

How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules


module M

System Fω


term e

elaboration e ⟶ e′￼

γ ⊢ e : τ



How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules


module M

System Fω


term e

MetaFM


module M

elaboration

add staging

e ⟶ e′￼

γ ⊢ e : τ

What

we did

• cf. F-ing Modules [Rossberg, Russo, & Dreyer 2014]

– Uses an elaboration technique to define semantics


• Type-directed conversion of modules into System Fω terms


– Proves type safety in two steps:

1. Any elaborated term is well-typed under System Fω

2. System Fω [Girard 1972] fulfills Preservation & Progress



How to Define Semantics & Type Safety

Γ ⊢ M : ξ ↝ e

F-ing Modules


module M

System Fω


term e

MetaFM


module M

System Fω


term e

elaboration

add staging

Γ ⊢ M : ξ ↝ e
γ ⊢n e : τ
e n⟶ e′￼

e ⟶ e′￼

γ ⊢ e : τ

add staging
What

we did

• Our work:

– Also proves type safety in two steps:


1. Any elaborated term is well-typed under System Fω

2. System Fω    fulfills Preservation & Progress

elaboration



D ::= valn X : T
| type X :: K
| module X : S
| include S

B ::= valn X = E
| type X = T
| module X = M
| include M

Source Syntax

S ::= sig D end
| (X : S) → S
| S with type X = T

signatures

modulesbindings

declarations

• Almost the same as F-ing Modules [Rossberg+ 2014] except for   


•   and    were shorthand for    and  

valn X

∼val val val0 val1

M ::= X | M . X
| struct B end
| fun(X : S) → M
| X X
| X :> S

var. & projection

structures

sealing

functor abs./app.}

F-ing Modules

MetaFM System Fω

System Fω

higher- 
kinded



D ::= valn X : T
| type X :: K
| module X : S
| include S

B ::= valn X = E
| type X = T
| module X = M
| include M

Source Syntax

S ::= sig D end
| (X : S) → S
| S with type X = T

signatures

modulesbindings

declarations

• Almost the same as F-ing Modules [Rossberg+ 2014] except for   


•   and    were shorthand for    and  

valn X

∼val val val0 val1

M ::= X | M . X
| struct B end
| fun(X : S) → M
| X X
| X :> S

var. & projection

structures

sealing

functor abs./app.}

F-ing Modules

MetaFM System Fω

System Fω

higher- 
kinded

    specifies for which stage 
 the value    is defined
n

X



• An extension of System Fω [Girard 1972] with staging constructs


• Allows existentials only at stage 0

– This suffices for the elaboration of MetaFM

– Has no difficulty in mixing existentials and staging

Target Language:

System Fω

kinds κ ::= ∙ ∣ κ → κ

e ::= ⋯ ∣ pack (τ, e) as ∃α . τ ∣ ⋯ ∣ ⟨e⟩ ∣ ∼eterms

τ ::= α ∣ τ τ ∣ ∃α :: κ . τ ∣ ⋯ ∣ ⟨τ⟩

code types

bracket

higher-kinded 
types

escape

F-ing Modules

MetaFM System Fω

System Fω



• Leaving types out of account, elaboration is simply like:


• Though somewhat naïve in that it changes binding time, 
this elaboration at least fulfills type safety

– Related issues will be discussed later

Essence of 
Elaboration

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X)
n

(at stage )n

F-ing Modules

MetaFM System Fω

System Fω



1. Any elaborated term is well-typed:


2. Target type safety:

Correctness of MetaFM

Theorem  

If , then .Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋

Theorem (Preservation).

If  and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress).

If  and , then 
 is a value at stage , 

or there exists  such that .

⊢≥1 γ γ ⊢n e : τ
e n

e′￼ e n⟶ e′￼

F-ing Modules

MetaFM System Fω

System Fω

F-ing Modules

MetaFM System Fω

System Fω

✔︎

✔︎



• Cross-stage persistence (CSP) [Taha & Sheard 2000]

– A multi-stage feature that enables us to use 

one common value at more than one stage

– Useful, e.g., when one wants to use basic functions 

(such as (+) or  List.map) at both compile-time and runtime

Extension with Cross-Stage Persistence



• Cross-stage persistence (CSP) [Taha & Sheard 2000]

– A multi-stage feature that enables us to use 

one common value at more than one stage

– Useful, e.g., when one wants to use basic functions 

(such as (+) or  List.map) at both compile-time and runtime


• Formalization:

– Add a binding syntax:  


– Extend both source & target type systems with stage var.

• A limited version of env. classifiers [Taha & Nielsen 2003] 

or transition var. [Tsukada+ 2009] [Hanada+ 2014]


• … See our paper for detail! 

B ::= valn X = E ∣ val≥n X = E ∣ ⋯

Extension with Cross-Stage Persistence

   will be bound as a value 
 usable at any stage 
X

n′￼ ( ≥ n)



• Brief introduction to multi-stage programming


• Motivating examples


• Formalization


• Discussions

– Limitations

– (Ongoing) future work

– Related work

– Conclusion
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• Does not support the Run primitive [Taha+ 1997]

– Example:  run (genpower 3) 5        125

– Can perhaps be overcome by some orthogonal methods


• Cannot extend with first-class modules

– Currently regards all modules as stage-0 stuff


• Cannot accommodate features with effects 
such as mutable refs

– Because of the binding-time change

Limitations



Stage-1 expressions containing mutable refs are 
converted to target expressions that have unintended behavior

Issues on Mutable Refs

elaboration

Will generate


λ().

  (ref 42) := 57;

  (λn. ) !(ref 42)

which prints 42

M.main ()  is expected to print 57

val x = ref 42

val main () =
  x := 57;
  print !x

module M = struct

  

end

let M’ =
  let x’ =         in
  let main’ =
    

                    

  in
  { x = x’ ; main = main’ }

print’~        !~ x’

~   := 57;x’
λ().

ref 42

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X )
n

Recall: elaboration is like:



• We can probably define better elaboration rules 
by using static interpretation [Elsman 1999] [Bochao+ 2010]

– Converts module structures into a flat list of bindings 

of the form    (with functor applications resolved)


– We implemented promising elaboration rules for SATYSFI [Suwa 2018] 
and observed that they work fine with mutable refs

• SATYSFI: An ML-like statically typed language for typesetting documents


– Let-insertion [Danvy & Fillinski 1990] [Sato+ 2020] could also be effective, 
but it may complicate semantics and its correctness

valn x = e

Ongoing Work: Refine Elaboration

val x = ref 42

val main () =
  x := 57;
  print !x

module M = struct

  

end

(val1 precedes’ = λts1. λts2. );

(val0 generate’ = λts. );

(val1 x’ = ref 42);
(val1 main’ = λ().

  x’ := 57;

  print’ !x’)

elaboration



Related Work 1: Staging Modules
Staging beyond terms [Inoue, Kiselyov, & Kameyama 2016]

Program generation for ML modules [Watanabe & Kameyama 2018]

Module generation without regret [Sato, Kameyama, & Watanabe 2020]

The studies above MetaFM (ours)

Basic purpose

Elimination of overheads 
caused by functors 
by using staging

Provide a realistic module system 
for MSP, especially from the 
viewpoint of type abstraction

Language 
design

Staging whole 
module expressions

• Seems ineffective for the 

purpose of type abstraction

Staging each item individually



Related Work 2: MacoCaml [Xie, White, Nicole, 
 & Yallop 2023]

MacoCaml MetaFM (ours)

Basic purpose
Extend OCaml with 
type-safe, composable macros

Provide MSP languages 
with full-blown module features, 
especially with type abs.

Formalization 
of semantics

Given directly on 
source syntactic entities

Given through elaboration to 
System Fω

Functors ✖︎ ✔︎ Supported

Type abs. ✖︎ ✔︎ Supported
Avoidance 

problem 
[Lillibridge 1997] 

[Crary 2020]

🙁  Extending with proj. 
     and type abs. by 
     may well cause this issue

✔︎ Free from this concern 
    thanks to the elaboration

Eval. order

✔︎ Intuitive

• Supports mutable refs

🙁  Currently causes a gap between 
     users’ intuition and 
     actual behavior of target terms


• Probably remedied by ongoing work

CSP ✔︎ By ✔︎ By 

Run prim. ✖︎ ✖︎

X :> S
M . X

import↓ val≥n X = E



• MetaFM: a module system that enables us to 
decompose multi-stage programs into modules 
without preventing type abstraction


• Supports many important features:

– Advanced module operations


• (generative) higher-order functors, projection, higher-kinded types, etc.


– Cross-stage persistence [Taha+ 2000] by the form  


• Has limitations that should be remedied by future work

– Cannot extend with effectful computation


• Probably overcome by static-interpretation-based elaboration


– Cannot handle first-class modules

val≥n X = E

Conclusion

[Elsman 1999]
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Appendix A:


Auxiliary Materials



• Transparent declarations of types:





– where  should be inferred from 


• Local bindings by projection:





– where  is fresh


• Functor app. and sealing generalized for arbitrary modules:





– where , , and  are fresh

type X = T := include (struct type X :: K end with type X = T )

K T

let B in M := (struct B; module X = M end) . X
let B in E := (struct B; val X = E end) . X

X

M1 M2 := let module X1 = M1; module X2 = M2 in X1 X2

M :> S := let module X = M in X :> S
X1 X2 X

Syntax Sugars [Rossberg, Russo, & Dreyer 2014]



• You cannot simply reject entities that refer to local types:


• But, for a module depending on some local types, 
in general there’s no principal signature that avoids 
mentioning the local types escaping the scope


– Both  M.(Bar x)  and  M.(Bar y) 
should type-check, but 
no signature for  M  that avoids 
mentioning  foo  achieves it 
(without special mechanisms)

Avoidance Problem [Lillibridge 1997] [Crary 2020]

let Local =

   :> sig

    type t

    val x : t

  end

in Local.x

⋯
let Local =

   :> sig

    type t = int

    val x : t

  end

in Local.x

⋯
✖︎ Rejected
Type Local.t 
is escaping 
its scope

✔︎ OK
Assigned type 
Local.t (= int)

module M =

  let type foo = Foo in

   :> sig

    type dummy α = foo

    type bar = Bar of foo

    val x : dummy int

    val y : dummy bool

  end

⋯



module Timestamp :> sig
  type t
  val make : int -> t
￼
end = struct
  type t = int (* Internally in Unix time *)
  val make ts = ts
  
end

⋯

⋯

Staging Modules isn’t Effective

module GenTimestamp :> sig
  val generate : string -> Timestamp.t
end = struct
  val generate s =
    match parse_datetime s with
    | None    -> failwith “invalid datetime”
    | Some ts ->                  (lift ts)  
end 

Timestamp.make ~

For type abstraction,

we have to leave

at least one fun. app.

at stage 1

We have to make a backdoor 
that exposes internal details



Appendix B:


Basic Elaboration Rules



Example of Elaboration
∃β :: ∙ . {

l𝚝 ↦ ⦗= β :: ∙ ⦘,

l𝚙𝚛𝚎𝚌𝚎𝚍𝚎𝚜 ↦ ⦗β → β → bool⦘1,

l𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎 ↦ ⦗string → ⟨β⟩⦘0,
…}

sig

  type t :: *

  val precedes : t -> t -> bool

  ~val generate : string -> t 

  

end

⋯

(Key : sig

  type t :: *

  val≥0 compare : t -> t -> int

end) -> sig

  type t :: * -> *

  val empty : ∀α. t α

  val find_opt :

    ∀α. Key.t -> t α -> option α

  ~val generate :

    ∀α. list (Key.t × α) -> t α 

  

end

⋯

∀χ :: ∙ . {
l𝚝 ↦ ⦗= χ :: ∙ ⦘,

l𝚌𝚘𝚖𝚙𝚊𝚛𝚎 ↦ ⦗χ → χ → int⦘≥0

} → ∃β :: ∙ → ∙ . {
l𝚝 ↦ ⦗= β :: ∙ → ∙ ⦘,

l𝚎𝚖𝚙𝚝𝚢 ↦ ⦗∀α :: ∙ . β α⦘1,

l𝚏𝚒𝚗𝚍_𝚘𝚙𝚝 ↦ ⦗∀α :: ∙ . χ → β α → option α⦘1,

l𝚐𝚎𝚗𝚎𝚛𝚊𝚝𝚎 ↦ ⦗∀α :: ∙ . list (χ × α) → ⟨β α⟩⦘0,
…}



• Internal representation of signatures used in type-checking


• Updates from F-ing Modules [Rossberg+ 2014] and Fω types:

– The stage number superscript    of  

– Code types:

n ⦗τ⦘n

Semantic Signatures & Target Types

ξ ::= ∃α :: κ . Σ

concrete sig.

abstract sig.

Σ ::= ⦗τ⦘n

| ⦗= τ :: κ⦘
| {lX : Σ}
| ∀α :: κ . Σ → ξ (internal) functor sig.

(internal) structure sig.

value items for stage n
type items

τ ::= α ∣ τ τ ∣ ⋯ ∣ ⟨τ⟩



Signature Elaboration
“Under type env. , sig.  is 
interpreted as abstract sig. .”

Γ S
ξΓ ⊢ S ↝ ξ

Γ ⊢ D ↝ ∃b . R

Γ ⊢ D ↝ ∃b . R

Γ ⊢ D ↝ ∃b . R
Γ ⊢ sig D end ↝ ∃b . {R}

Γ ⊢ S1 ↝ ∃b . Σ1 Γ, b, X : Σ1 ⊢ S2 ↝ ξ2

Γ ⊢ (X : S1) → S2 ↝ ∃ϵ . (∀b . Σ1 → ξ2)

Γ ⊢ D1 ↝ ∃b1 . R1 dom b1 ∩ tv Γ = ∅
Γ, b1, R1 ⊢ D2 ↝ ∃b2 . R2 dom b2 ∩ dom b1 = ∅

Γ ⊢ D1 ⋅ D2 ↝ ∃b1b2 . R1 ⊎ R2Γ ⊢ ϵ ↝ ∃ϵ . ∅

Γ ⊢ T :: ∙ ↝ τ
Γ ⊢ valn X : T ↝ ∃ϵ . {lX ↦ ⦗τ⦘n}

Γ ⊢ K ↝ κ
Γ ⊢ type X :: K ↝ ∃α :: κ . {lX ↦ ⦗= α :: κ⦘}

Γ ⊢ S ↝ ∃b . Σ
Γ ⊢ module X : S ↝ ∃b . {lX ↦ Σ}

Γ ::= ⋅ | Γ, X : Σ
| Γ, α :: κ

Introduces

type var.



Elaboration Rules
Γ ⊢ M : ξ ↝ e

“Under type env. , module expr.  is assigned 
abstract sig.  and converted to term .”

Γ M
ξ e

Γ ⊢ B : ∃b . R ↝ e
Γ ⊢ struct B end : ∃b . {R} ↝ e

Γ ⊢ S1 ↝ ∃b . Σ1 Γ, b, X : Σ1 ⊢ M2 : ξ2 ↝ e2

Γ ⊢ fun(X : S1) → M2 : (∀b . Σ1 → ξ2) ↝ (Λb . λX1 . e2)

Γ(X1) = ∀b . Σ → ξ Γ(X2) = Σ2 Γ ⊢ Σ2 ⩽ ∃b . Σ ↑ τ ↝ f
Γ ⊢ X1 X2 : [τ/b]ξ ↝ X1 τ ( f X2)

Subtyping produces

embodied types 

and an injection fun.

Γ ⊢ B : ∃b . R ↝ e
(nil and cons; elaboration is 
complicated due to 
intro./elim. of )∃



Elaboration Rules
Γ ⊢ B : ∃b . R ↝ e

Γ ⊢ M : ∃b . Σ ↝ e
Γ ⊢ module X = M : ∃b . {lX ↦ Σ} ↝ {lX ↦ e}

Γ ⊢n E : τ ↝ e
Γ ⊢ valn X = E : ∃ϵ . {lX ↦ ⦗τ⦘n} ↝ {lX ↦ ⟨⋯⟨{𝚟𝚊𝚕 = e}⟩⋯⟩}{ {n n

Γ ⊢n E : τ ↝ e

Γ ⊢ M : ∃b . {R} ↝ e R(lX) = ⦗τ⦘n ⌊Γ⌋ ⊢ τ :: ∙
Γ ⊢n M . X : τ ↝ (∼⋯∼ (unpack (b, y) = e in y#lX))#𝚟𝚊𝚕{n

valn X = E let X = ⟨⋯⟨
⏟

E ⟩⋯⟩
⏟n n

M . X ∼ ⋯ ∼ (M . X)
n

Essentially, we do something like the following internally:

( )



• : Embedding of type env. to System Fω   ones


• , : Embedding of semantic sig. to System Fω   types

⌊Γ⌋

⌊ξ⌋ ⌊Σ⌋

Elaboration Preserves Typing

Theorem

• If , then .

• If , then .

Γ ⊢n E : τ ↝ e ⌊Γ⌋ ⊢n e : τ
Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋



• Since System Fω   has type equivalence, 
proving Inversion Lemma etc. is not so trivial

– Chapter 30 in TaPL [Pierce 2002] handles this topic

Target Type Safety

Theorem (Preservation of System Fω  ).

If  and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress of System Fω  ).

If  and , then  is a value at stage , or 
there exists  such that .

⊢≥1 γ γ ⊢n e : τ e n
e′￼ e n⟶ e′￼

  :   all entries of the form  in  satisfy ⊢≥1 γ x : τn γ n ≥ 1



Appendix C:


Cross-Stage Persistence



An Example for CSP: MakeMap (Recall)
• Implementing the macro  generate  requires 

the comparison function on keys (as well as  find_opt  etc.)

~

module MakeMap :> (Key : Ord) -> sig
  type t :: * -> * 
  val empty : ∀α. t α
  val find_opt : ∀α. Key.t -> t α -> option α
  
  ~
end = fun(Key : Ord) -> struct
  type t α = Leaf | Node of  (* Balanced binary tree *)
  val empty = Leaf
  val find_opt key map = 
  
  ~
end

val generate : ∀α. list (Key.t × α) -> t α

val generate kvs = 

 Comparison function  Key.compare : t -> t -> int 
 should also be usable at stage 0 here! 
 (not only at stage 1 in ordinary functions)



• We must assert that bodies    of    depend only on 
CSP values (i.e. those bound by , not by )


• Local variables in    of    should also be allowed


• Extend both source and target with stage var. 


            


      

E val≥n X = E
val≥k valk

E val≥n X = E

σ

s ::= n | n ∔ σ Γ ::= ⋯ | Γ, σ Γ ⊢s E : τ ↝ e

γ ::= ⋯ | γ, σ γ ⊢s e : τ

How to Type-check CSP Items

non-CSP Can be instantiated to any stage n′￼ ( ≥ n)



• Extend System Fω   terms & types for  :


• Extend typing rules:

σ

How to Extend Target Language with CSP

e ::= ⋯
| ⟨e⟩σ | ∼σ e
| Λσ . e | e↑s

staging constructs with σ

stage variable abs./app.

τ ::= ⋯ | ⟨τ⟩σ | ∀σ . τ γ ::= ⋯ | γ, σ

σ ∈ γ γ ⊢n+σ e : τ
γ ⊢n ⟨e⟩σ : ⟨τ⟩σ

σ ∈ γ γ ⊢n e : ⟨τ⟩σ

γ ⊢n+σ ∼σ e : τ

σ ∉ γ γ, σ ⊢0 e : τ
γ ⊢0 Λσ . e : ∀σ . τ

γ ⊢0 e : ∀σ . τ γ ⊢ s
γ ⊢0 e↑s : [s/σ]e



How to Extend Elaboration for CSP

σ ∉ Γ Γ, σ ⊢n∔σ E : τ ↝ e
Γ ⊢ val≥n X = E : ∃ϵ . {lX ↦ ⦗τ⦘≥n} ↝ {lX ↦ Λσ . ⟨⟨⋯⟨{𝚟𝚊𝚕 = e}⟩⋯⟩⟩σ}{ {n n

Γ ⊢ B : ∃b . R ↝ e

Σ ::= ⋯ ∣ ⦗τ⦘≥n



CSP Does Not Break Type Safety

Theorem (Preservation of System Fω  ).

If  and , then .γ ⊢n e : τ e n⟶ e′￼ γ ⊢n e′￼: τ

Theorem (Progress of System Fω  ).

If  and , then  is a value at stage , or 
there exists  such that .

⊢≥1 γ γ ⊢n e : τ e n
e′￼ e n⟶ e′￼

  :   all entries of the form  in  satisfy ⊢≥1 γ x : τs γ s ≥ 1

Theorem

• If , then .

• If , then .

Γ ⊢s E : τ ↝ e ⌊Γ⌋ ⊢s e : τ
Γ ⊢ M : ξ ↝ e ⌊Γ⌋ ⊢0 e : ⌊ξ⌋


